3.190 \(\int \frac {x^{12}}{(b x^2+c x^4)^2} \, dx\)

Optimal. Leaf size=79 \[ -\frac {7 b^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b}}\right )}{2 c^{9/2}}+\frac {7 b^2 x}{2 c^4}-\frac {7 b x^3}{6 c^3}-\frac {x^7}{2 c \left (b+c x^2\right )}+\frac {7 x^5}{10 c^2} \]

[Out]

7/2*b^2*x/c^4-7/6*b*x^3/c^3+7/10*x^5/c^2-1/2*x^7/c/(c*x^2+b)-7/2*b^(5/2)*arctan(x*c^(1/2)/b^(1/2))/c^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {1584, 288, 302, 205} \[ \frac {7 b^2 x}{2 c^4}-\frac {7 b^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b}}\right )}{2 c^{9/2}}-\frac {7 b x^3}{6 c^3}-\frac {x^7}{2 c \left (b+c x^2\right )}+\frac {7 x^5}{10 c^2} \]

Antiderivative was successfully verified.

[In]

Int[x^12/(b*x^2 + c*x^4)^2,x]

[Out]

(7*b^2*x)/(2*c^4) - (7*b*x^3)/(6*c^3) + (7*x^5)/(10*c^2) - x^7/(2*c*(b + c*x^2)) - (7*b^(5/2)*ArcTan[(Sqrt[c]*
x)/Sqrt[b]])/(2*c^(9/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {x^{12}}{\left (b x^2+c x^4\right )^2} \, dx &=\int \frac {x^8}{\left (b+c x^2\right )^2} \, dx\\ &=-\frac {x^7}{2 c \left (b+c x^2\right )}+\frac {7 \int \frac {x^6}{b+c x^2} \, dx}{2 c}\\ &=-\frac {x^7}{2 c \left (b+c x^2\right )}+\frac {7 \int \left (\frac {b^2}{c^3}-\frac {b x^2}{c^2}+\frac {x^4}{c}-\frac {b^3}{c^3 \left (b+c x^2\right )}\right ) \, dx}{2 c}\\ &=\frac {7 b^2 x}{2 c^4}-\frac {7 b x^3}{6 c^3}+\frac {7 x^5}{10 c^2}-\frac {x^7}{2 c \left (b+c x^2\right )}-\frac {\left (7 b^3\right ) \int \frac {1}{b+c x^2} \, dx}{2 c^4}\\ &=\frac {7 b^2 x}{2 c^4}-\frac {7 b x^3}{6 c^3}+\frac {7 x^5}{10 c^2}-\frac {x^7}{2 c \left (b+c x^2\right )}-\frac {7 b^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b}}\right )}{2 c^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 71, normalized size = 0.90 \[ \frac {x \left (\frac {15 b^3}{b+c x^2}+90 b^2-20 b c x^2+6 c^2 x^4\right )}{30 c^4}-\frac {7 b^{5/2} \tan ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b}}\right )}{2 c^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^12/(b*x^2 + c*x^4)^2,x]

[Out]

(x*(90*b^2 - 20*b*c*x^2 + 6*c^2*x^4 + (15*b^3)/(b + c*x^2)))/(30*c^4) - (7*b^(5/2)*ArcTan[(Sqrt[c]*x)/Sqrt[b]]
)/(2*c^(9/2))

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 190, normalized size = 2.41 \[ \left [\frac {12 \, c^{3} x^{7} - 28 \, b c^{2} x^{5} + 140 \, b^{2} c x^{3} + 210 \, b^{3} x + 105 \, {\left (b^{2} c x^{2} + b^{3}\right )} \sqrt {-\frac {b}{c}} \log \left (\frac {c x^{2} - 2 \, c x \sqrt {-\frac {b}{c}} - b}{c x^{2} + b}\right )}{60 \, {\left (c^{5} x^{2} + b c^{4}\right )}}, \frac {6 \, c^{3} x^{7} - 14 \, b c^{2} x^{5} + 70 \, b^{2} c x^{3} + 105 \, b^{3} x - 105 \, {\left (b^{2} c x^{2} + b^{3}\right )} \sqrt {\frac {b}{c}} \arctan \left (\frac {c x \sqrt {\frac {b}{c}}}{b}\right )}{30 \, {\left (c^{5} x^{2} + b c^{4}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^12/(c*x^4+b*x^2)^2,x, algorithm="fricas")

[Out]

[1/60*(12*c^3*x^7 - 28*b*c^2*x^5 + 140*b^2*c*x^3 + 210*b^3*x + 105*(b^2*c*x^2 + b^3)*sqrt(-b/c)*log((c*x^2 - 2
*c*x*sqrt(-b/c) - b)/(c*x^2 + b)))/(c^5*x^2 + b*c^4), 1/30*(6*c^3*x^7 - 14*b*c^2*x^5 + 70*b^2*c*x^3 + 105*b^3*
x - 105*(b^2*c*x^2 + b^3)*sqrt(b/c)*arctan(c*x*sqrt(b/c)/b))/(c^5*x^2 + b*c^4)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 73, normalized size = 0.92 \[ -\frac {7 \, b^{3} \arctan \left (\frac {c x}{\sqrt {b c}}\right )}{2 \, \sqrt {b c} c^{4}} + \frac {b^{3} x}{2 \, {\left (c x^{2} + b\right )} c^{4}} + \frac {3 \, c^{8} x^{5} - 10 \, b c^{7} x^{3} + 45 \, b^{2} c^{6} x}{15 \, c^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^12/(c*x^4+b*x^2)^2,x, algorithm="giac")

[Out]

-7/2*b^3*arctan(c*x/sqrt(b*c))/(sqrt(b*c)*c^4) + 1/2*b^3*x/((c*x^2 + b)*c^4) + 1/15*(3*c^8*x^5 - 10*b*c^7*x^3
+ 45*b^2*c^6*x)/c^10

________________________________________________________________________________________

maple [A]  time = 0.01, size = 68, normalized size = 0.86 \[ \frac {x^{5}}{5 c^{2}}-\frac {2 b \,x^{3}}{3 c^{3}}+\frac {b^{3} x}{2 \left (c \,x^{2}+b \right ) c^{4}}-\frac {7 b^{3} \arctan \left (\frac {c x}{\sqrt {b c}}\right )}{2 \sqrt {b c}\, c^{4}}+\frac {3 b^{2} x}{c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^12/(c*x^4+b*x^2)^2,x)

[Out]

1/5*x^5/c^2-2/3*b*x^3/c^3+3*b^2*x/c^4+1/2/c^4*b^3*x/(c*x^2+b)-7/2/c^4*b^3/(b*c)^(1/2)*arctan(1/(b*c)^(1/2)*c*x
)

________________________________________________________________________________________

maxima [A]  time = 2.91, size = 71, normalized size = 0.90 \[ \frac {b^{3} x}{2 \, {\left (c^{5} x^{2} + b c^{4}\right )}} - \frac {7 \, b^{3} \arctan \left (\frac {c x}{\sqrt {b c}}\right )}{2 \, \sqrt {b c} c^{4}} + \frac {3 \, c^{2} x^{5} - 10 \, b c x^{3} + 45 \, b^{2} x}{15 \, c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^12/(c*x^4+b*x^2)^2,x, algorithm="maxima")

[Out]

1/2*b^3*x/(c^5*x^2 + b*c^4) - 7/2*b^3*arctan(c*x/sqrt(b*c))/(sqrt(b*c)*c^4) + 1/15*(3*c^2*x^5 - 10*b*c*x^3 + 4
5*b^2*x)/c^4

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 66, normalized size = 0.84 \[ \frac {x^5}{5\,c^2}-\frac {2\,b\,x^3}{3\,c^3}+\frac {3\,b^2\,x}{c^4}-\frac {7\,b^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {c}\,x}{\sqrt {b}}\right )}{2\,c^{9/2}}+\frac {b^3\,x}{2\,\left (c^5\,x^2+b\,c^4\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^12/(b*x^2 + c*x^4)^2,x)

[Out]

x^5/(5*c^2) - (2*b*x^3)/(3*c^3) + (3*b^2*x)/c^4 - (7*b^(5/2)*atan((c^(1/2)*x)/b^(1/2)))/(2*c^(9/2)) + (b^3*x)/
(2*(b*c^4 + c^5*x^2))

________________________________________________________________________________________

sympy [A]  time = 0.36, size = 124, normalized size = 1.57 \[ \frac {b^{3} x}{2 b c^{4} + 2 c^{5} x^{2}} + \frac {3 b^{2} x}{c^{4}} - \frac {2 b x^{3}}{3 c^{3}} + \frac {7 \sqrt {- \frac {b^{5}}{c^{9}}} \log {\left (x - \frac {c^{4} \sqrt {- \frac {b^{5}}{c^{9}}}}{b^{2}} \right )}}{4} - \frac {7 \sqrt {- \frac {b^{5}}{c^{9}}} \log {\left (x + \frac {c^{4} \sqrt {- \frac {b^{5}}{c^{9}}}}{b^{2}} \right )}}{4} + \frac {x^{5}}{5 c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**12/(c*x**4+b*x**2)**2,x)

[Out]

b**3*x/(2*b*c**4 + 2*c**5*x**2) + 3*b**2*x/c**4 - 2*b*x**3/(3*c**3) + 7*sqrt(-b**5/c**9)*log(x - c**4*sqrt(-b*
*5/c**9)/b**2)/4 - 7*sqrt(-b**5/c**9)*log(x + c**4*sqrt(-b**5/c**9)/b**2)/4 + x**5/(5*c**2)

________________________________________________________________________________________